1. 经典案例
100张票,3个窗口卖票.出票需要时间
出现的问题:
原因是线程的随机性.
- 3个线程同时卖同一张如刚启动时的第100张.比如:
if(ticket>0){sleep,打印票号,并且--}
线程依次休息,假设它们按顺序醒来,就会出现同时打印第100张,然后依次–,就直接跳到97了
- 可能出现负数的票
先进入判断后依次醒来,线程1==>1, 线程2==>0,线程3==>-1
2. 分析和解决
安全问题出现的条件
- 是多线程环境
- 有共享数据
- 有多条语句操作共享数据
如何解决多线程安全问题呢?
基本思想:让程序没有安全问题的环境
怎么实现呢?
- 把多条语句操作共享数据的代码给锁起来,让任意时刻只能有一个线程执行即可
- Java提供了同步代码块的方式来解决
synchronized(任意对象) {
多条语句操作共享数据的代码
}
synchronized(任意对象):就相当于给代码加锁了,任意对象就可以看成是一把锁
public class SellTicket implements Runnable {
private int tickets = 100;
private Object obj = new Object();
@Override
public void run() {
while (true) {
synchronized (obj) {
if (tickets > 0) {
try {
Thread.sleep(100);
//t1休息100毫秒
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票");
tickets--;
}
}
}
}
}
- 好处:解决多线程安全问题
- 坏处:每次都要判断,需要耗费资源.
2.1. 同步方法
就是把synchronized关键字加到方法上
修饰符 synchronized 返回值类型 方法名(方法参数) {
方法体;
}
同步方法的锁对象是什么呢?
this,上面的代码就可以
synchronized(this)
2.1.1. 验证例子
加一个判断,奇数票使用上面代码(修改为this),偶数票把上面代码封装成一个同步方法.
2.2. 静态同步方法
就是把synchronized关键字加到静态方法上
修饰符 static synchronized 返回值类型 方法名(方法参数) {
方法体;
}
同步静态方法的锁对象是什么呢?
类名.class
3. 线程安全的类
- StringBuffer
- 线程安全,可变的字符序列
- 从版本JDK 5开始,被StringBuilder 替代. 通常应该使用StringBuilder类,因为它支持所有相同的操作,但它更快,因为它不执行同步
- Vector
- 从Java 2平台v1.2开始,该类改进了List接口,使其成为Java Collections Framework的成员. 与新的集合实现不同, Vector被同步. 如果不需要线程安全的实现,建议使用ArrayList代替Vector
- Hashtable
- 该类实现了一个哈希表,它将键映射到值. 任何非null对象都可以用作键或者值
- 从Java 2平台v1.2开始,该类进行了改进,实现了Map接口,使其成为Java Collections Framework的成员. 与新的集合实现不同, Hashtable被同步. 如果不需要线程安全的实现,建议使用HashMap代替Hashtable
- 可以通过
Collections.synchronizedList()
来把一个不安全的list转换成安全的.
4. Lock锁
虽然我们可以理解同步代码块和同步方法的锁对象问题,但是我们并没有直接看到在哪里加上了锁,在哪里释放了锁,为了更清晰的表达如何加锁和释放锁,JDK5以后提供了一个新的锁对象Lock
Lock是接口不能直接实例化,这里采用它的实现类ReentrantLock来实例化
- ReentrantLock构造方法
ReentrantLock() : 创建一个ReentrantLock的实例
- 加锁解锁方法
方法名 说明 void lock() 获得锁 void unlock() 释放锁
public class SellTicket implements Runnable {
private int tickets = 100;
private Lock lock = new ReentrantLock();
@Override
public void run() {
while (true) {
try {
lock.lock();
if (tickets > 0) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "正在出售第" + tickets + "张票");
tickets--;
}
} finally {
lock.unlock();
}
}
}
}
//
public class SellTicketDemo {
public static void main(String[] args) {
SellTicket st = new SellTicket();
Thread t1 = new Thread(st, "窗口1");
Thread t2 = new Thread(st, "窗口2");
Thread t3 = new Thread(st, "窗口3");
t1.start();
t2.start();
t3.start();
}
}
5. 生产者和消费者
生产者消费者模式是一个十分经典的多线程协作的模式
所谓生产者消费者问题,实际上主要是包含了两类线程:
- 一类是生产者线程用于生产数据
- 一类是消费者线程用于消费数据
为了解耦生产者和消费者的关系,通常会采用共享的数据区域,就像是一个仓库
生产者生产数据之后直接放置在共享数据区中,并不需要关心消费者的行为
消费者只需要从共享数据区中去获取数据,并不需要关心生产者的行为
5.1. Object类的等待和唤醒方法
方法名 | 说明 |
---|---|
void wait() | 导致当前线程等待,直到另一个线程调用该对象的 notify()方法或 notifyAll()方法 |
void notify() | 唤醒正在等待对象监视器的单个线程 |
void notifyAll() | 唤醒正在等待对象监视器的所有线程 |
5.2. 例子
public class Box {
//定义一个成员变量,表示第x瓶奶
private int milk;
//定义一个成员变量,表示奶箱的状态
private boolean state = false;
//提供存储牛奶和获取牛奶的操作
public synchronized void put(int milk) {
//如果有牛奶,等待消费
if (state) {
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果没有牛奶,就生产牛奶
this.milk = milk;
System.out.println("送奶工将第" + this.milk + "瓶奶放入奶箱");
//生产完毕之后,修改奶箱状态
state = true;
//唤醒其他等待的线程
notifyAll();
}
public synchronized void get() {
//如果没有牛奶,等待生产
if (!state) {
try {
wait();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
//如果有牛奶,就消费牛奶
System.out.println("用户拿到第" + this.milk + "瓶奶");
//消费完毕之后,修改奶箱状态
state = false;
//唤醒其他等待的线程
notifyAll();
}
}
消费者:
public class Customer implements Runnable {
private Box b;
public Customer(Box b) {
this.b = b;
}
@Override
public void run() {
while (true) {
b.get();
}
}
}
生产者:
public class Producer implements Runnable {
private Box b;
public Producer(Box b) {
this.b = b;
}
@Override
public void run() {
for(int i=1; i<=30; i++) {
b.put(i);
}
}
}
运行:
public class BoxDemo {
public static void main(String[] args) {
//创建奶箱对象,这是共享数据区域
Box b = new Box();
//创建生产者对象,把奶箱对象作为构造方法参数传递,因为在这个类中要调用存储牛奶的操作
Producer p = new Producer(b);
//创建消费者对象,把奶箱对象作为构造方法参数传递,因为在这个类中要调用获取牛奶的操作
Customer c = new Customer(b);
//创建2个线程对象,分别把生产者对象和消费者对象作为构造方法参数传递
Thread t1 = new Thread(p);
Thread t2 = new Thread(c);
//启动线程
t1.start();
t2.start();
}
}